Rogelj, J. et al. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change (eds Masson-Delmotte, V. et al.) In press (2018).
Mo, W., Wang, R. & Zimmerman, J. B. Energy–water nexus analysis of enhanced water supply scenarios: a regional comparison of Tampa Bay, Florida, and San Diego, California. Environ. Sci. Technol. 48, 5883–5891 (2014).
Google Scholar
Sambito, M. & Freni, G. LCA methodology for the quantification of the carbon footprint of the integrated urban water system. Water 9, 395 (2017).
Google Scholar
Meron, N., Blass, V. & Thoma, G. A national-level LCA of a water supply system in a Mediterranean semi-arid climate—Israel as a case study. Int. J. Life Cycle Assess. 25, 1133–1144 (2020).
Hsien, C., Low, J. S. C., Fuchen, S. C. & Han, T. W. Life cycle assessment of water supply in Singapore—a water-scarce urban city with multiple water sources. Resour. Conserv. Recycl. 151, 104476 (2019).
Google Scholar
Slagstad, H. & Brattebø, H. Life cycle assessment of the water and wastewater system in Trondheim, Norway—a case study: Case Study. Urban water J. 11, 323–334 (2014).
Google Scholar
Parkinson, S. C. et al. Climate and human development impacts on municipal water demand: a spatially-explicit global modeling framework. Environ. Model. Softw. 85, 266–278 (2016).
Google Scholar
Rothausen, S. G. S. A. & Conway, D. Greenhouse-gas emissions from energy use in the water sector. Nat. Clim. Chang. 1, 210 (2011).
Google Scholar
Parkinson, S. et al. Balancing clean water-climate change mitigation trade-offs. Environ. Res. Lett. 14, 014009 (2019).
Google Scholar
McDonald, R. I. et al. Water on an urban planet: Urbanization and the reach of urban water infrastructure. Glob. Environ. Chang. 27, 96–105 (2014).
Google Scholar
Pal, A., He, Y., Jekel, M., Reinhard, M. & Gin, K. Y.-H. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ. Int. 71, 46–62 (2014).
Google Scholar
Escriva-Bou, A., Lund, J. R. & Pulido-Velazquez, M. Saving energy from urban water demand management. Water Resour. Res. 54, 4265–4276 (2018).
Google Scholar
Dworak, T. et al. EU Water Saving Potential (Institute for International and European Environmental Policy, 2007).
Flörke, M. et al. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study. Glob. Environ. Chang. 23, 144–156 (2013).
Google Scholar
House-Peters, L. A. & Chang, H. Urban water demand modeling: review of concepts, methods, and organizing principles. Water Resour. Res. 47, W05401 (2011).
Gracia-De-Rentería, P., Barberán, R. & Mur, J. Urban water demand for industrial uses in Spain. Urban Water J. 16, 114–124 (2019).
Google Scholar
Vassolo, S. & Döll, P. Global-scale gridded estimates of thermoelectric power and manufacturing water use. Water Resour. Res. 41, W04010 (2005).
Dieu-Hang, T., Grafton, R. Q., Martínez-Espiñeira, R. & Garcia-Valiñas, M. Household adoption of energy and water-efficient appliances: An analysis of attitudes, labelling and complementary green behaviours in selected OECD countries. J. Environ. Manag. 197, 140–150 (2017).
Google Scholar
Attari, S. Z. Perceptions of water use. Proc. Natl Acad. Sci. 111, 5129–5134 (2014).
Google Scholar
Gonzales, P. & Ajami, N. Social and structural patterns of drought-related water conservation and rebound. Water Resour. Res. 53, 10619–10634 (2017).
Google Scholar
Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361, 748–750 (2018).
Google Scholar
Britton, T. C., Stewart, R. A. & O’Halloran, K. R. Smart metering: enabler for rapid and effective post meter leakage identification and water loss management. J. Clean. Prod. 54, 166–176 (2013).
Google Scholar
Cominola, A. et al. Long-term water conservation is fostered by smart meter-based feedback and digital user engagement. npj Clean Water 4, 1–10 (2021).
Google Scholar
Gurung, T. R., Stewart, R. A., Beal, C. D. & Sharma, A. K. Smart meter enabled informatics for economically efficient diversified water supply infrastructure planning. J. Clean. Prod. 135, 1023–1033 (2016).
Google Scholar
Kajenthira, A., Siddiqi, A. & Anadon, L. D. A new case for promoting wastewater reuse in Saudi Arabia: Bringing energy into the water equation. J. Environ. Manag. 102, 184–192 (2012).
Google Scholar
Stillwell, A. S. et al. An integrated energy, carbon, water, and economic analysis of reclaimed water use in urban settings: a case study of Austin, Texas. J. Water Reuse Desalin. 1, 208–223 (2011).
Google Scholar
Stillwell, A. S. & Webber, M. E. Geographic, technologic, and economic analysis of using reclaimed water for thermoelectric power plant cooling. Environ. Sci. Technol. 48, 4588–4595 (2014).
Google Scholar
Kavvada, O., Nelson, K. L. & Horvath, A. Spatial optimization for decentralized non-potable water reuse. Environ. Res. Lett. 13, 64001 (2018).
Google Scholar
Santhosh, A., Farid, A. M. & Youcef-Toumi, K. Real-time economic dispatch for the supply side of the energy-water nexus. Appl. Energy 122, 42–52 (2014).
Google Scholar
Gomez Sanabria, A., Höglund Isaksson, L., Rafaj, P. & Schöpp, W. Carbon in global waste and wastewater flows–its potential as energy source under alternative future waste management regimes. Adv. Geosci. 45, 105–113 (2018).
Google Scholar
Song, X. et al. Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges. Bioresour. Technol. 270, 669–677 (2018).
Google Scholar
Qadir, M. et al. Global and regional potential of wastewater as a water, nutrient and energy source. Nat Resour. Forum 44, 40–51 (2020).
Google Scholar
McCarty, P. L., Bae, J. & Kim, J. Domestic wastewater treatment as a net energy producer: Can this be achieved? Environ. Sci. Technol. 45, 7100–7106 (2011).
Google Scholar
Tubiello, F. N. et al. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 8, 15009 (2013).
Google Scholar
Bertrand, A., Aggoune, R. & Maréchal, F. In-building waste water heat recovery: An urban-scale method for the characterisation of water streams and the assessment of energy savings and costs. Appl. Energy 192, 110–125 (2017).
Google Scholar
Guo, X. & Hendel, M. Urban water networks as an alternative source for district heating and emergency heat-wave cooling. Energy 145, 79–87 (2018).
Google Scholar
Vesilind, P. Wastewater Treatment Plant Design Vol. 2 (IWA Publishing, 2003).
Guo, T., Englehardt, J. & Wu, T. Review of cost versus scale: water and wastewater treatment and reuse processes. Water Sci. Technol. 69, 223–234 (2013).
Google Scholar
Liu, L. et al. The importance of system configuration for distributed direct potable water reuse. Nat. Sustain. 3, 548–555 (2020).
Wu, D., Wang, H. & Seidu, R. Smart data driven quality prediction for urban water source management. Futur. Gener. Comput. Syst. 107, 418–432 (2020).
Google Scholar
Lafortezza, R., Chen, J., Van Den Bosch, C. K. & Randrup, T. B. Nature-based solutions for resilient landscapes and cities. Environ. Res. 165, 431–441 (2018).
Google Scholar
Engström, R., Howells, M., Mörtberg, U. & Destouni, G. Multi-functionality of nature-based and other urban sustainability solutions: New York City study. L. Degrad. Dev. 29, 3653–3662 (2018).
Google Scholar
Kernan, R., Liu, X., McLoone, S. & Fox, B. Demand side management of an urban water supply using wholesale electricity price. Appl. Energy 189, 395–402 (2017).
Google Scholar
Menke, R., Abraham, E., Parpas, P. & Stoianov, I. Demonstrating demand response from water distribution system through pump scheduling. Appl. Energy 170, 377–387 (2016).
Google Scholar
Davison-Kernan, R., Liu, X., McLoone, S. & Fox, B. Quantification of wind curtailment on a medium-sized power system and mitigation using municipal water pumping load. Renew. Sustain. Energy Rev. 112, 499–507 (2019).
Google Scholar
Wang, D. et al. Hierarchical market integration of responsive loads as spinning reserve. Appl. Energy 104, 229–238 (2013).
ENBALA. Pennsylvania American Water Connects to the Smart Grid (ENBALA, 2018).
Muhanji, S. O., Barrows, C., Macknick, J. & Farid, A. M. An enterprise control assessment case study of the energy–water nexus for the ISO New England system. Renew. Sustain. Energy Rev. 141, 110766 (2021).
Google Scholar
Oikonomou, K. & Parvania, M. Optimal coordinated operation of interdependent power and water distribution systems. IEEE Trans. Smart Grid 11, 4784–4794 (2020).
Google Scholar
Tilmant, A. & Kinzelbach, W. The cost of noncooperation in international river basins. Water Resour. Res. 48, https://doi.org/10.1029/2011WR011034 (2012).
Vinca, A. et al. Transboundary cooperation a potential route to sustainable development in the Indus Basin. Nat. Sustain. 4, 331–339 (2020).
Spang, E. S. & Loge, F. J. A high-resolution approach to mapping energy flows through water infrastructure systems. J. Ind. Ecol. 19, 656–665 (2015).
Google Scholar
Bartos, M. D. & Chester, M. V. The conservation nexus: valuing interdependent water and energy savings in Arizona. Environ. Sci. Technol. 48, 2139–2149 (2014).
Google Scholar
Wada, Y. et al. Co-designing Indus Water-Energy-Land. Futures One Earth 1, 185–194 (2019).
Google Scholar
Inland Empire Utility Agency. Chino Basin Watermaster Optimum Basin Management Program Update (Inland Empire Utility Agency, 2020).
Helm, D. Catchment Management, Abstraction and Flooding: The Case for a Catchment System Operator and Coordinated Competition (New College, 2015).
IWA. Action Agenda for Basin-Connected Cities: Influencing and Activating Urban Stakeholders to be Water Stewards in their Basins (IWA, 2018).
Source: Resources - nature.com